
Supplementary Material for Motion Diversification Networks

Abstract

In this supplementary material, we first provide additional implementation details, including network architecture and
training details, in Sec. 1. In Sec. 2, we present details regarding the experimental setup used for investigating how well
realistic and in-the-wild 3D human motion can be captured by our model. In Sec. 3, we provide additional ablation analysis
regarding underlying model components and qualitative results depicting the diverse and expressive motion produced by our
final model. Additional visualizations with synthesized animations are shown in the supplementary video.

1. Implementation
1.1. z-Transformer

In our work, we propose a simple and effective mechanism for learning to predict diverse 3D human motion in context. We
leverage an attention-based architecture to transform a set of sampled random variables and guiding context information to a
diverse set of latent codes, subsequently decoded into a predicted set of 3D human motions. We leverage eight transformer
layers with positional encoding input [10, 40]. Each transformer layer updates the input query Z0 = [ϵ1; ϵ2; . . . ; ϵK ],
where ϵi ∈ R128, and all encoded context and motion primitives (following summation) E0 ∈ RK×128, through multi-head
self-attention (MHSA), multi-head cross-attention (MHCA), and a multi-layer perceptron (MLP):

El = MHSA(El,El,El) + El (1)

Zl = MHCA(Zl,El,El) + El (2)

Zl+1 = MLP(Zl) + Zl (3)

where MHSA(q, k, v) and MHCA(q, k, v) computes self-attentions and cross-attentions between queries q, keys k, and values
v, respectively [10, 40].Our MLP comprises two linear layers and Layernorm [43]. We add the learnable 1-D positional
encoding to the context-aware input embedding (summation with E0. We note that while this provides a general mechanism
for fusing motion primitives, latent codes, and contextual information, our key insight is to apply the transformer-based
module to a set of sampled random variables which enables effectively modeling correlations among the modes during the
diversification process.

1.2. Encoder and Decoder Architecture

As shown by the overview figure in the main paper, our motion generation network assumes an encoder, for processing input
observations and context, and a decoder, for mapping latent codes outputted by the transformer-based module to future mo-
tion, i.e., 3D pose and 2D path. The model is trained in two stages, first as a conditional variational autoencoder (CVAE) [18],
then with the proposed diversity sampling function.

Context Encoder: Our encoder architecture is implemented similarly across the various types of contexts of human pose
history, waypoints, image context, and social context. Each is processed using a dedicated GRU with 128 hidden units,
followed by a two-layer MLP (with 300 and 200 hidden dimensions). The outputs are then summed and projected with a
fully-connected (FC) layer to a final 128-dimensional vector which is taken as input by both the diversification module and
the decoder (see Fig. 2 of the main paper). For image context encoding, which captures interaction with surrounding context,
we first process a padded person-centered window to extract a 1000-dimensional feature using a Swin Transformer [25] prior
to inputting to the aforementioned dedicated GRU. Specifically, we leverage Swin-B [25] pre-trained on ImageNet-1K [9].



This backbone outperformed other backbones based on ResNet [16]. Leveraging other models, e.g., the larger SwinV2-
B [26], did not result in further performance gains for our settings. We also note that our network architecture can be readily
extended to integrate other types of contexts, e.g., 3D context with Bird’s Eye View occupancy information [15, 28], yet as
depth and occupancy information can be difficult to obtain in our dense monocular settings, we leave this for future work.
Particularly for the in-the-wild YouTube dataset (also see our supplementary video), we find basic computer vision tasks,
such as 2D pose estimation, to fail often. To facilitate capturing social relationships, in addition to the image-level context
we also investigate the role of social context cues from nearby 3D skeletons. At each frame and for each pedestrian, we
extract a social descriptor based on 3D poses of nearby people and whether they are in the same group or not (this variable
obtained through analysis of tracked long-term trajectories, as will be discussed in Sec. 2). These per-frame descriptors are
then inputted to a social context GRU. Fig. 1 depicts examples for the neighborhood over which social context is computed.
Leveraging a scale-aware radius (0.6× height of the person’s skeleton in the image) centered between the feet we are able
to provide more explicit social cues as well as pool information over any nearby 3D pose interactions and groups. We also
experimented with incorporating ego-motion cues (e.g., as in [49]), yet found no additional benefits (the aforementioned cues
can already encode such spatio-temporal context).

Branched Decoder: For our full model (evaluated with image context in DenseCity), we find it beneficial to incorporate
2D path prediction task, i.e., feet center in image coordinates over time [4, 29], in addition to 3D pose in root-normalized
3D coordinates output [47, 50]. While prior work predicts these tasks sequentially, e.g., Cao et al. [4, 37] predicts a set
of 2D paths and subsequently a single 3D pose along each path, we find it beneficial to holistically model the two tasks
with a branched decoder architecture. Each decoder leverages a GRU followed by an MLP with three FC layers (hidden
dimensions of 300, 200, and 192—the output dimensionality of the 3D pose). We find the branched decoder architecture
to improve overall sample diversity as well as 3D pose prediction along each trajectory. The predicted 2D path can also be
used to predict root translations, i.e., for animation, using a ground plane homography in evaluation [37] (depicted in our
supplementary video). We note that directly predicting 3D pose in absolute coordinates resulted in poor performance on our
benchmark. Predicting full joint rotations directly by the model beyond just 3D skeleton (e.g., [31, 51]) was found to be
similarly difficult in our settings. Instead, in our qualitative animation results we leverage the swing-twist decomposition of
HybrIK [21, 44] for estimating body-part rotations and leave direct prediction of such quantities future work.

1.3. Motion Generation Network Training Details

Training Protocol: We optimize the model in two stages using Adam [17], first the encoder and decoder structure using
standard CVAE training, and then training of the latent space diversification network leveraging a joint reconstruction and
diversity objective, as mentioned in the main paper. For each stage, the initial learning rate (lr) is set to 1×10−3 and decayed
after 100 epochs using lr = 0.001× (1.0− max(0, epoch−100)

400 ). The model is trained for 800 and 500 epochs during the first
and second training stage, respectively. The batch size is set to 100. We leverage K = 50 samples which we empirically
found to work well for our motion prediction dataset, and leverage a J = 65 skeleton representation on our dataset (the
standard parameterization in Unreal Engine and CARLA). For 3DPW and HPS we follow the same parameterization, and
for Human3.6M we follow the standard parameterization of 17 joints [50]. On Human3.6M, we leverage the additional loss
terms from Xu et al. [30, 47]. We did not find the additional loss terms to be beneficial on the other datasets. When training
the model over both synthetic and real-world YouTube data (see Sec. 2), we simply mix the motion trajectories obtained from
both datasets, sampled at equal amounts within each batch.

2. Data
Our chosen experimental setup of diversifying 3D motion predictions focuses on a challenging but important use-case in
robotics of navigation in urban settings. We emphasize that while there are ample benchmarks for context-aware 2D path mo-
tion forecasting [2, 3, 6, 13, 19, 29, 34, 46] few benchmarks exist for diverse 3D human motion generation in urban settings.
Moreover, prior benchmarks for context-aware 3D human motion modeling (e.g., GTA-IM [4], JtA [11]) only incorporate
limited motion diversity in simplified conditions (e.g., without social settings and intricate layouts). Other benchmarks, e.g.,
3DPW [41] and HPS [14], only offer a handful of relevant scenes. Thus, to investigate how well our model captures natural
3D human motion in context, we leverage synthetic and real-world datasets comprising complex and crowded scenes. We
specifically focus on 360◦ videos in both real-world and synthetic scenes that afford evaluation of longer-term context-aware
prediction (as shown in Fig. 3 of the main paper, observed paths can span the entire view).



Figure 1. Example Social Context Computation. To effectively capture social interactions in our model, we input the model with social
cues from nearby skeletons. To compute the social context, we leverage a simple neighborhood-based descriptor that is defined over spatial
area based on the pedestrian height (0.6×). Examples are shown for two scenes from 360◦ videos (from YouTube in this case). We also
overly the results of the 2D pose estimation results, to demonstrate our challenging settings.

2.1. Simulation Benchmark

Despite being more realistic in motion compared to related benchmarks, e.g., Habitat [35], Gibson [1], the current built-in
controller in the CARLA simulation produces 3D motion with limited diversity. Moreover, the highly-tuned path and artic-
ulated kinematics controller may fail in dense conditions, such as around objects and crowds (shown in our supplementary
video). To fully explore the ability of our proposed model to learn to generate diverse motion, we further analyze the ben-
efits of realistic in-the-wild human motion from 360◦ YouTube videos, as discussed next. When generating DenseCity, we
specifically matched the simulation settings with the type of view that would be captured in the YouTube videos (and further
perform perspective augmentation during training, as further discussed below).

2.2. YouTube Dataset Construction

In this section, we describe our processing of 360◦ YouTube videos, used to fully explore the ability of our proposed model
to learn to generate diverse motion. The panoramic view facilitates sufficiently long motion trajectories and complete sur-



Figure 2. Example Scenes From the YouTube Dataset. We visualize additional frames from our data from Boston (top left), Tokyo (top
right), Quebec (bottom left), and Seoul (bottom right).

rounding context. Example visualizations of the videos in the dataset are shown in Fig. 2

Extracting Long-Term Motion Sequences from Unconstrained Video: To extract 3D motion from unconstrained videos
with dense crowds, high pose variability, and diverse human-human and human-object interactions, we employ a modular
approach. The modular approach follows several state-of-the-art techniques [5, 12, 21, 23, 32, 38, 44, 52, 54] (we note that
two-step approaches are often found to outperform direct 3D pose estimation [22, 31, 33, 39]). We first detect and track
the 2D joint keypoints in the image [8, 12]. We leverage the off-the-self multi-person 2D keypoint detection and tracking
algorithm AlphaPose [12, 20, 45], trained on the Halpe dataset [12] with a ResNet-50 backbone [16]. We subsequently lift
the 2D joints to the normalized 3D space X. For consistency, we always set the coordinate frame of the target 3D poses in
training to be in a fixed camera height from the ground and zero pitch and roll. We find state-of-the-art 2D keypoint estimation
and tracking models to frequently fail in our settings, i.e., due to density of people, occlusion, and scale variability, an issue
we address below using a robust lifting module.

Geometry-guided Lifting of 2D Keypoint Sequences: Our lifting module leverages a geometry-aware spatio-temporal
transformer-based architecture [10, 40, 48, 53] to map 2D poses to a root-normalized 3D pose. Information across the joints
of a person within a single frame is first encoded using a spatial transformer layer, and then aggregated over multiple frames
with a temporal transformer layer. The approach is similar to Zheng et al. [53], with a key difference of an added consistency
term. We incorporate extensive data augmentation strategies in training from the initial lifting dataset to improve robustness,
e.g., various camera views and noisy or dropped 2D keypoints. Our lifting training objective is defined as a weighted sum
over 3D pose and bone symmetry consistency,

L3D = Lpose + λsLsymmetry (4)

where the pose term is computed as the Mean Per Joint Position Error (MPJPE) between ground truth Xj [t] and estimated
position X̂j [t] of the j-th joint, i.e., Lpose = 1

J

∑
j∈J ||Xj [t] − X̂j [t]||2, where we dropped the time index t for clarity.

The symmetry loss is an unsupervised term, Lsymmetry =
∑

(l,r)∈J ||BL(X̂l[t]) − BL(X̂r[t])||2, penalizing bone length
(BL) differences between all corresponding left (l) and right (r) side body bone pairs. The symmetry term regularizes 3D



Figure 3. Example Scenes from the User Study. Participants watched two side by side animation and selected their preferred video in
term of realism.

lifting under noisy cases and partial occlusion (λs is a scalar hyperparameter, set as 10−4). We did not find additional
physical constraint terms, e.g., bone length [7, 24], to provide further performance gains in our settings. Moreover, standard
re-projection consistency terms [42] cannot be utilized due to the unknown camera intrinsic parameters.

2.3. User Study Details

Accurately evaluating natural and realistically diverse motion is challenging. In order to holistically evaluate the predicted
motion generated from our model, we sample trajectories from it and compared it to the CARLA build-in trajectories. We
then perform a user study where participants watched two adjacent animations and (1) selected their preferred animation
out of the two, and (2) ranked each on a realism likert scale from one to five. Examples of the scenes can be seen in our
supplementary video and in Fig. 3.

3. Additional Analysis
In this section, we provide additional model ablations (Sec. 3.1) and more qualitative results (Sec. 3.2).

3.1. Model Ablation

Impact of Motion Primitives Guidance: We first analyze the role of the motion primitives input to the z-transformer in
Table 1. As shown, the motion primitives help improve diversity (by 9%) while similar (slightly higher ADE) accuracy is
observed. We note that even a small increase in APD is considered significant [44].

Effectiveness of Separate Decoder: In this experiment, we investigate the effectiveness of our joint training of pose and
path with branched decoder across various architecture of decoder. Specifically, we train our model on DenseCity with three



Table 1. Impact of Motion Primitives on Human3.6M. We show the benefits of incorporating motion primitives into the transformer-
based module on Human3.6M.

Method APD ↑ ADE ↓ FDE ↓
MDN w/o Primitives 15.992 0.352 0.446
MDN 17.450 0.355 0.442

Table 2. Decoder Architecture Ablations on DenseCity. Compared to the sequential pipeline, where first 2D path is predicted followed
by 3D pose [4, 37], we efficiently model the two tasks jointly. We find a slight decrease in FDE (as the 2D path acts as a dedicated goal-
prediction module [29]), but a higher diversity and better ADE performance using the joint decoder architecture. We select the branched
decoder architecture due to its high diversity and overall balanced performance.

3D Pose 2D Path

Method APD ↑ ADE ↓ FDE ↓ APD ↑ ADE ↓ FDE ↓
Sequential [4] (Separate 2D path and 3D pose) 17.915 0.595 0.939 1.257 0.692 0.646
Joint Training (Shared Decoder) 17.092 0.698 1.060 0.533 0.723 0.722
Joint Training (Branched Decoder) 16.799 0.584 0.879 1.065 0.666 0.621

Table 3. Evaluation on DenseCity. Results are shown in terms of diversity (APD) and accuracy (ADE, FDE) against several baselines for
both 3D pose and 2D trajectory error over a three seconds future prediction task.

3D Pose 2D Path

Method APD ↑ ADE ↓ FDE ↓ APD ↑ ADE ↓ FDE ↓
CVAE [18] 11.790 0.794 1.309 - - -
PoseGPT [27] 14.227 1.011 1.343 - - -
HuMoR [36] 13.234 1.038 1.551 - - -
DLow [50] 14.778 0.755 1.254 - - -
Cao et al. [4] 8.157 1.197 1.643 1.240 0.681 0.625
MDN 15.332 0.749 1.253 1.750 0.675 0.614

Cao et al. [4]+YouTube 6.818 0.956 1.390 1.135 0.693 0.639
MDN+YouTube 17.010 0.752 1.248 1.868 0.675 0.623

different decoder structures, including a sequential method with separate 2D path and 3D pose decoders, and two joint training
methods, with a shared decoder and a branched decoder, respectively. As shown in Table 2, we observe higher diversity due
to the efficient joint training architecture compared to sequential training. While the sequential predictor performs well in
terms of APD, the two architectures are complementary, e.g., goal-driven predictions can be used to further inform our jointly
trained model in the future [29]. Notably, the accuracy in 3D pose and the 2D path is significantly improved with the adoption
of the branched decoder in the MDN.

Three Seconds Future Prediction: The analysis in the main paper follows a standard two-second future prediction window
[47, 50]. To validate our model beyond the standard window, Table 3 depicts longer three-second window results. As shown
in the table, overall errors of all baselines increase due to the more challenging prediction task, particularly towards the end of
the trajectory. We can see how reasoning over 3D pose and 2D path for the longer time window can be difficult, resulting in an
increase for 3D Pose ADE and FDE. When considering our main metric of 3D future pose, we find our model to provide the
best prediction accuracy, with a 0.749 ADE and 1.253 FDE, and diversity (15.332) across all models. Incorporating YouTube
video data also improves diversity and 3D pose prediction accuracy further. For further study, through integration into an
open-source simulation environment, we hope our articulated human motion model can contribute towards more realistic
validation scenarios for computer vision and robotics research in the future.

3.2. Additional Qualitative Results

In Fig. 4 we provide additional qualitative results by visualizing the end poses using a K = 7 samples model. We demon-
strate increased 3D motion diversity compared to baselines, including the CVAE and DLow baselines. We also observed
improvements in pose diversity by incorporating real-world motion.
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Figure 4. Qualitative Comparisons on DenseCity. We show diverse end-poses of our model compared to baselines. We further improve
pose diversity by leveraging YouTube data (+ YT) during training.

Failure Cases in CARLA: To understand the limitations of current pedestrian controllers in simulation, Fig. 5 visualizes
several failure cases in CARLA. As shown in the figure, while the kinematics controller performs reasonably over scenarios
with little pedestrians, more dense settings can result in near-collisions, pedestrians getting stuck, and implausible scenarios.
The failure cases can also be seen in our supplementary video, where our full MDN model is shown to resolve such cases.



(a) Unnatural turn shown next to the bus stop on the left due to multiple pedestrians at close proximity.

(b) Collisions may occur among pedestrians in dense scenes.

(c) Physically implausible scenarios due to two stranded pedestrians at close proximity.

Figure 5. Qualitative Examples of Failure Cases with CARLA Built-in Pedestrian Controller.
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